On Submanifolds in a Riemannian Manifold with a Semi-Symmetric Non-Metric Connection
نویسندگان
چکیده
In this paper, we study submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection on a submanifold is also semi-symmetric non-metric connection. We consider the total geodesicness and minimality of a submanifold with respect to the semi-symmetric non-metric connection. We obtain the Gauss, Cadazzi, and Ricci equations for submanifolds with respect to the semi-symmetric non-metric connection.
منابع مشابه
ON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملOn some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection
We study submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection is also a semi-symmetric non-metric connection. We consider the total geodesicness, total umbilicity and the minimality of a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection. We have obtained the Gauss, Codazzi and Ricci equations wit...
متن کاملInequalities for Submanifolds of a Riemannian Manifold of Nearly Quasi-constant Curvature with a Semi-symmetric Non-metric Connection
By using two new algebraic lemmas we obtain Chen’s inequalities for submanifolds of a Riemannian manifold of nearly quasi-constant curvature endowed with a semi-symmetric non-metric connection. Moreover, we correct a result of C. Özgür and A. Mihai’s paper (Chen inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection, Canad. Math. Bull. 55 (2012), 611–622).
متن کاملLightlike Submanifolds of Indefinite Kaehler Manifolds with Quarter Symmetric Non-metric Connection
In this paper, we study lightlike submanifolds of indefinite Kaehler manifolds. We introduce a class of lightlike submanifold called semi-invariant lightlike submanifold. We consider lightlike submanifold with respect to a quarter-symmetric non metric connection which is determined by the complex structure. We give some equivalent conditions for integrability of distributions with respect to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017